AOTHOR
TITLE

INS TITUTION
SPONS AGENCY
REPCRT NO
pub date
NOTE
EDRS PRICE DESCRIPTORS

IDENTIFIERS

Gattis, William D.; Dunklau, M. William Enrollment and Facilities Projection Program: General Description and Users Guide. Project SImD-School: Dallas Component.
Dallas Independent School District, Tex. Dept. of Pesearch and Evaluation.
Bureau of Elementary and Secondary Education (DHEW/OE), Washington, D.C. RR-75-616
Feb 75
42p.; Related documents are EA 007 350-354
MF-\$0.76 HC-\$1.95 PLUS POSTAGE
Computer Oriented programs; *Computer Programs; Data Analysis; Educational Administration; Elementary Secondary Education; *Enrollient Projections; *Facility Requirements; Management Systems; *Personnel Needs; *Program Guides Elementary Secondary Education Act Title III; *Enrollaent and Pacilities Projection Program; ESEA Title III; Project SIMJ School

ABSTRACT

This booklet describes the Enrollment and Facilities Projection Program, a computer program package developed as one part of a family of educational management systems. The program consists of three parts, including a means of projecting enrollment. a means of converting enrollment to teacher and facilities requirements, and a means of reporting the projections. The booklet is organized into two sections-a general description and a user's guide. A detailed outline of dialogue and operational flow is contained in the user's guide. Numerous examples of data reports that can be produced using the program are presented throughout the booklet. (JG)

[^0]| AUTHOR | Gattis, William D.; Dunklau, M. William |
| :---: | :---: |
| TITLE | Enrollment and Facilities Projection Program: General |
| | Description and Users Guide. Project SImu-School: |
| | Dallas Component. |
| INSTITUTION | Dallas Independent School District, Tex. Dept. of |
| | Pesearch and Evaluation. |
| SPONS AGENCY | Bureau of Elementary and Secondary Education |
| | (DHEW/OE). Washington, D.C. |
| REPCRT NO | RR-75-616 |
| pub date | Feb 75 |
| NOTE | 42p.; Related documents are EA 007 350-354 |
| EDPS PRICE | MF-\$0.76 HC-\$1.95 PLOS POSTAGE |
| DESCRIPTORS | Computer Oriented programs; *Computer Programs; Data |
| | Analysis; Educational Administration; Elementary |
| | Secondary Education; *Enrollment Projections; |
| | *Facility Requirements; Management Systems; |
| | *Personnel Needs; *Program Guides |
| IDENTIFIERS | Elementary Secondary Education Act Title III; |
| | *Enrollment and Pacilities Projection Program; ESEA |
| | Title III; Project SIMO School |

ABSTRACT

This booklet describes the Enrollment and Facilities projection program. a computer program package developed as one part of a family of educational management systems. The program consists of three parts, including a means of projecting enrollment, a means of converting enrollment to teacher and facilities requirements, and a means of reporting the projections. The booklet is organized into two sections-a general description and a user's guide. A detailed outline of dialogue and operational flow is contained in the user's guide. Numerous examples of data reports that can be produced using the program are presented throughout the booklet. (JG)

[^1]

Dallas Independent School District Dr. Nolan Estes, General Superintendent

Development Division Mr. Rogers L. Barton Associate Superintendent

Department of Research, Evaluation, and Information Systems Dr. William J. Webster Deputy Associate Superintendent

ENROLLMENT AND FACILITIES PROJECTION PROGRAM: general description and users guide

Research Report No. 75-616
William D. Gattis
Assistant Director
M. William Dunklau

Technical Director

Approved report of the Department of Research, Evaluation, and Information Systems

Deputy Assistant Superintendent Planning and Data Processing Services

William J. Webster, PhD. Deputy Associate Superintendent Research, Evaluation, and Information Systems

EXECUTIVE SUMMARY

Objectives of the Project: The Enrollment and Facilities Projection Program consists of three parts: a means of projecting enrollment, a means of converting enrollment to teacher and facilities requirements, and a means of reporting the projections. Inputs consist of birth and enrollment history data, projected average teachers salaries, class loading by TEA subject code, and facilities data for each school in the district. Data calculated is saved and can be output at the option of the user in a variety of printed reports.

The program is an independent computer program package and is one of the components in a comprehensive family of programs which includes the faculty Projection Program and the Financial Projection Program. Separately or ds a total set, the aim is to improve educational planning and decisionmaking at the district level.

Once a basic set of input data is prepared, the program can be used to examine the effect on the school district of variables affecting enrollment and facilities availability. Each of these variations can be run and reported as a separate case. The reports section of the program will report the results and can also compare selected cases.

The following reports are available:
District-wide Reports
Total Enrollment (by case)
Total Teachers (by case)
Total Facilities (by case)

School Reports
School Enrollment (by case and school)
Teacher Requirements (by case and school)
Facilities Utilization (by case and school)

Compurative Reports

Total Enrollment (two cases)
School Enrollment (two cases, school and grade)
Teacher Requirements (two cases, school and grade) Facilities Utilization (two cases and school) Differences in Enrollment, Teachers, and Facilities (two cases and schools).

enrollment and facilities projection program

general description

Synopsis

The Enrollment and Facilities Projection Program consists of three parts: a means of projecting enrollment, a means of converting enrollment to teacher and facilities requirements, and a means of reporting the projections. Inputs consist of birth and enrollment history data, projected average teachers salaries, class loading by TEA subject code, and facilities data for each school in the district. Data calculated is saved and can be output at the option of the user in a variety of printed reports.

The program is operated in an interactive mode. A detailed outline of dialogue and operational flow is contained in the Users Guide.

Once a basic set of input data is prepared, the LEA Model can be used to examine the effect on the school district of variables. effecting enrollment and facilities availability. Each of these variations can be run and reported as a separate case. The reports section of the LEA Model will report the results, and can also generate reports comparing selected cases.

Inputs Requirements

Three input data files must be prepared by the user before running the program. These are:

ENRLH - Enrollment history
TRPARA - Teacher utilization
facdat - Facilities data

The enrollment history file consists of 3 parts:
(1) beginning, dates for history and projection
(2) birth history data
(3) enrollment history data

The teacher utilization file consists of two parts:
(1) Projected average teachers salaries by year for the next 10 years.
(2) Class loading data, ordered by TEA subject code and by school.

The facilities data file lists facilities data by school for each school in the district. This data describes the rooms available at each school by type code.

Functional Description

The Enrollment and Facilities Projection Program consists of three parts: a means of projecting enrollment, a means of converting enrollment to teacher and facilities requirements, and a means of reporting the projections.

Enrollment Forecasting

The enrollment projection is based on a cohort survival ration model. In this model, the ratio of the number of students in a given grade to the number of students one grade higher in the following year (called the "cohori survival ratio") is calculated. Then statistics describing the cohort survival ratio over a period of time can be calculated such as mean, variance, and standard deviation. The statistics calculated are then output in the form of a printed report.

Three methods are available for calculating the statistics on cohort survival. The first is called the Mean of the Ratios. In this method, the cohort survival ratio is calculated for each grade for each year of data. The mean and variance of these ratios are then calculated and reported.

The second method is called the Ratio of the Averages. In this method, the average number of pupils in a given grade is divided by the average number of pupils a year later in the following grade to determine the cohort survival ratio. The variance in the ratio of these averages is then calculated and
reported.

The third method involves first calculating the cohort survival ratio as in method one. The logarithm of each ratio is determined, and the mean of the logarithms and the variance in the mean is calculated. The anti-log of the mean is then determined, and the results of these calculations are reported. The anti-log of the mean is represented as the "log normal cohort survival ratio."

The cohort survíval ratios calculated can be used as is to forecast future enrollment by grade, or the ratio can be modified by adding or subtracting some fraction of a standard deviation, and the modified ratio used to forecast future enrollment.

In the Enrollment and Facilities Projection Program, survival ratios are caículated for the total enrollment of the District, for the entire historic period of coverage. The ratios include the ratio of births six years previous to first grade enrollment, as well as the ratio of births five years previous to kindergarten enrollment; thus kindergarten and first grade enrollment are predicted on the basis of births, while enrollment in any other grade is simply the cohort survival ratio times the total enrollment in the previous grade one year earlier.

The last year of data is used with the survival ratios to calculate the enrollment in the first year of projection. The same ratios are applied using the first year of projection to project a second year and so forth until the final year of projection is reached. Enrollment is distributed among schools on the basis of the ratio of the enrollment in a given grade in a given school to the total enrollment in that grade in the district. These ratios are applied year by year in order to calculate the enrollment in a given school.

In addition to forecasting enrollment directly from the cohort survival ratios, the program makes provision for inward and outward migration of students. Migration can be applied to a district as a whole, representing growth or decline in total population, or it can be applied to an individual school and grade. If the migration figures are applied at the individual school level, it is the users responsibility to see that the net migration within the district is 0 ; that is, if 50 pupils are removed from one school, 50 pupils must be entered into another school. Any net change in total enrollment must be handled at the districtwide level.

Teacher Requirements

Once the enrollment by school has been calculated, the teacher requirements can be determined. For an elementary school, teacher requirements are calculated on the basis of pupil/teacher ratios by grade. The enrollment in a grade is multiplied by the reciprocal of the pupil/teacher ratio in order to calculate the number of teachers required for a given grade.

For secundary schools, the number of teachers is based on the TEA subject code. An array of ratios is calculated, each of which reflects the fraction of the pupils (in a given school or district wide) taking a given subject mulitplied by the reciprocal of the average number of pupils a teacher in a particular subject area meets $f\left(\begin{array}{rl} \\ \text { an }\end{array}\right.$ average day. The matrix of ratios is multiplied by the total enrollment in the school in order to calculate the number of teachers required to teach a given subject in that school.

Salary is calculated on the basis of an average teacher's salary by year. The salary requirement at a school is obtained by multiplying the total number of teachers at that school by the average salary to be paid in a given year. This number is recorded as the teacher salaries for that year.

Facilities Projection

The facilities forecast is based on the teacher forecast. In general, rooms are assigned on the basis of one room for a teacher, with the class of room being determined by the subject code. The number of rooms required is increased by a fraction to reflect the fact that the room may be utilized by the teach. . for activities other th~n classes. Thus in a 7-period day in which the room is utilized 6 períods for classes, seven-sixths of the total number of rooms is calculated as the number of rooms required.

The facilities portion of the program assumes that the current builidig provi im is fixed; however, the total number of available rooms at a given school can be changed for any one year of the projection. If this is done, the change is carried forward to all future years.

Major Reports

All of the data for district wide totals of enollment, teachers and facilities as well as totals of enrollment, teachers and facilities by individual schools is saved in data files and can be printed bv the report writing section "f the program at the option of the user. Comparative reports are also avall.abl., dor total enrollment and for comparison among individual schools.

The reports available are:

```
District-wide Reports
    Total Enrollment (by case)
    Total Teachers (by case)
    Total Facilities (by case)
    School Reports
        School Enrollment (by case and school)
        Teacher Requirements (by case and school)
        Facilities Utilization (by case and school)
        Comparative Reports
            (as listed on next page)
```

Total Enrollment (two cases)
School Enrollment (two cases, school and grade)
Teacher Requirements, (two cases, school and grade)
Facilities Utilization (two cases and school)
Differences in Enrollment, Teachers, and Facilities (two cases and schrois)

Example reports using test ciata follow.

Report Requested by User：

Total Enrollment，Case 1

TOTAL（＇ADF ！
FNFOLLVFVT ：SETOFT

$\triangle \mathrm{SH}$ Y $\mathrm{A}:$	KIVEV	$1: 1$	eVL	3 n 1	4.7 H	51 H	fir	FL
19か．）－70	100	$\because<0$	971	265	矿7	276	（6）	4
1：70－71	$1 f 0$	これ1	256	$2+5$	¢51	20；	76	4.9
1971－78	193	9．9	943	¢＇1	¢ 67	－50	$\therefore: 7$	4．）
1972－7．1	$\cdots 14$	205	948	といつ	$\because 85$	© 61	cid	$4{ }^{\prime}$
1773－74	258	$3 \cap 1$	220	27%	\％ 1	¢f	¢我）	4.
1．74－75	$\because 10$	c7a	310	984	9×0	サッジ	9\％ 4	51.
1．975－76	2：3．	C以	－42	315	c $4^{\prime \prime}$	ころ1	çl	51
1）7f－77	235	305	$2 \rightarrow 1$	287	ごっ！	く90	Er．	5.1
1）77－7＂	$\because 09$	317	314	29\％	291	305	$\because 3$	5.
197ハ－7）	－0．	かめ？	326	31\％	3×0	¢）	$\therefore 1$	6
1979－＊	P03	274	$\therefore 30$	3.1	2： 24	$\cdots \cap 1$	： 34	r s．
1） 3 （1）	237	5×2	cep	275	95	Ser	$3 r^{3}$	hf
131－\％	9.77	920	90	号7	\％）	？ 34	\therefore－	57
1必必		320	30）	895	$\cdots 1$	300	$3 / 1$	$\checkmark \mu$
17．${ }^{\prime}$	95	＂？	3＊9	335	：3）	cys	36.	ち）

ir ：rif．	71.1	，7 1 ！	3111	1：1－1	1111	1 cl H	$\therefore \mathrm{FL}$	707 fl
1） 1 （1）－\％	＜ 4	：91	¢ 43	と実	170	11.1	1	2155
13\％－\％1	－ 4	－ir	－ 30	： 21	$1+7$	1／5	r	314%
1771－＇	273	093	$\cdots 1.0$	231	165	150	0	$3: 40$
1．75－：	¢タn	$\therefore 79$	， 6	$\because 41$	17 r	15\％	， 1	． 304
1173－71	cfor	¢07	$\therefore 7 n$	P5r	$1 \% 1$	15\％	1	． 4.35
1，74－15	－ 64		1	\＆ 6	1／2．	1／1	＇	3367
	P7？	\cdots	：5¢	¢ 6	$1 / 6$	171	，	34ir
1）7f－77	300	90x	； 4.	－51	$1<3$	13.1	¢	25.36
1777－14	－${ }^{\text {¢ }}$	$\therefore 7$	＇7	－ 54	1×4	17	1	3ヶ．． 6
1\％－7）	＋${ }^{\text {c }}$	115	小	$\because 6$	1：7	171		が：${ }^{\text {a }}$
1）71－！	331	3¢5	＇＂．	これり	$1 \cdot 4$	17.	\cdots	311．
1・のー・1	300	181	京； 1	$\cdots 4$	＇1：3	151	＇	3741
1，1－1－k，	11，	2：7	if 6	－ 7	－，	$1 \cdot 7$	1	a＇ry，
1）9\％－4？	3．34	3：7	¢）${ }^{\text {¢ }}$	－ハ	： 11	10	＂	3.16
1）	3 214		arif	吹。	， 1	116	1	： $1: 11$

Report Requested by User:

Total Teacher Requirements, Case 1

$1 \quad 1 \quad 1$

Report Requested of liser

Tcacher Requirements, Case $3, S$ hool $N o .4$

1

```
(4OO!.N
```



```
, Ca~下 シ
```


Cri if.	.	1	'	\therefore	'	5	γ	F 1	101.1. $\therefore \therefore$ A:IES
1975-76	$)$	11	13	\bigcirc	0	0	()	1	\therefore 'anOC. (10)
1975-78	10	15	10	r	r	!	0	1	- Arrn.r.
1478-77	11	13	$1:$	- n	0	0	t	1	a mirrono
197i-7	10	15	1%	\cdots	0	r	r	1	1) nc.an
1)7:-71	11	14	16	\bigcirc	$(1$	1	n	1	
137:-	$1:$	15	16	\cdots	i	0	-	1	، 7 loni.m
12*-51	1)	17	17	0	0	0	r	1	Shtmeren
13.31-	16	\because	19	1	0	c	0	c	6/1160.00
13^{*-}	$!$	e=	$1 \cdot 3$	r	r	,	1.	,	76 risireor
124-1	¿2.	24	''	r	0	n	1	:	yruriení

[^2]?

Report Requested by User:
Total Facilities, Case 4
T F 4

r.t-1) 1
?
keport Requested by L'ser:
l.acilities Report, Case 1 , School No. 2

, r). .
?

Report Requested by User：
Comparative Total Teachers，Case 1 and 2 ，
School No． 5

C T 1．-

if \because	$\therefore \therefore$	cover	1 IF
137ィー7－	＇i＇．	\therefore－	-10
1975－ir	＋「．	¢1．	－11．
1971－77	こ3．	c．	－11．
1）77－	33.	\cdots	－11．
1•7ハー7：	33.	$\therefore 0$	-1.9
1，79－．r	$\therefore 1$.	$\because \cdot$	－11．
11ス0－•1	\therefore－		－1ri．
1＋11－	$\cdots 1$	\therefore	－1＇0
1）${ }^{\prime \prime}{ }_{c}-$	$\bigcirc 7$	t	-13
13ヶて－4	$\because 7$ •	84.	－1．

Report Requested by User:
Comparative Facilities, Case $\underline{1} \& 2$,
School No. 5
$0 F 1$ Ch

Report Requested by User:
Comparative Differences in Enrollment, Teachers, and Facilities for Case 1 and 2, School 5

USERS GUIDE

Synopsis

The Enrollment and Facilities Projection Program consists of three parts: a means of projecting enrollment, a means of converting enrollment to teacher and facilities requirements, and a means of reporting the projections. Input; consist of birth and enrollment history data, projected average teachers salaries, class loading by subject code, and facilities data for each school in the district. Data calculated is saved and can be printed at the option of the user in a variety of reports.

The program is operated in an interactive mode. A detailed outline of dialogue and operational flow is contained in the Users Guide.

Once a basic set of input data is prepared, the projection program can be used to examine the effect on the school district of variables effecting enrollment and facilities availability. Each of these variations can be run and reported as a separate case. The reports section of the program will report the results, and can also generate reports comparing selected cases.

Input Structure

Three input data files must be prepared by the user before running the Model. The files are:

Enrollment History
Teacher Utilization
Facilities Data

The enrollment history file, ENRLH, consists of 3 parts:
(1) Beginning dates for history and projection
(2) Birth history data
(3) Enrollment history data

ENRLH Part 1. ENRLH Part 1 consists of one record that contains two fields read under a 2 F10.0 format. Field 1 contains the year in which the birth history data (ENRLH Part 2) first affects the enrollment. For instance, if the earliest birth history data is for 1963 , field 1 should contain 1969 $(1963+6)$, the year in which persons born in 1963 will enroll in school.

Field 2 contains the first year for which projections will be made. in most cases, this will be the current year since birth data cannot \quad,, m plete for the current year. In any event, the last year of birth data will be the year immediately preceeding the first year of wrojection.

FNRLH Part 2. ENRLH Part 2 consists of N records in If format, each of which contains the number of births in a given school year. The records must be in proper sequence according to year, and a record containing data must be present for each year within the range of years.

The expected list length N is implied by the data and the first vear in which birth history affects the enrollment (ENRLH Part 1). For instance, if the first year of birth data is for the 1963 school year, the first year enrollment will be affected will be 1963 . Field 1 of FNRLH Part 1 will contain 1969. If the current year is 1974 , then birth data should be complete through 1973. Field 2 of ENRLH Part 1 will therefore contain 1974 as the first year of projection. Brith data will have to be present for 1963 through 1973 , or 11 vears. The list length N should be 11 . Another way of determining N is $\mathrm{F}_{2}-\mathrm{Fr}_{1}+\underset{\sim}{6}=\mathrm{N}$, where F_{1} is the first year in
which birth history data affects enrollment (Field 1 on ENRLH Part 1), and F_{2} is the first year of projection (Field 2 on ENRLH fart 1).

ENRLH Part 3. This part of the ENRLH file consists of enrollment history by schoul, and by year. Up to 10 years of enrollment history data can be supplied.

Two records are required for each entry.
The format is: (I3, I1, A6, A5, I2, 7F5.0/17X, 7F5.0)
The fields are: F1 F2 F3 F4
Field Fl contains the school number. This number must be unique for each school within the system.

Field $F 2$ contains the school type. The types are:

> 1 - Elementary School
> 2 - Middle school
> 3 - High school

Field $\mathfrak{F} 3$ contains the name of the school.
Field F4 contains the school year which corresponds to the data contained on each pair of records read under the ENRLH Part 3 format. The school year is identified by fall semester number. Fall semester for the maximum 10 years of enrollment history are numbered from earliest to most recent semester, as $1,3,5, \ldots$, up to 19 , with 19 identifying the fall semester ot the most recent year, or the year inmediately preceeding the first year ot projection. If less than 10 years of enrollment history is supplied, 19 must still identify the fall semester of the most recent year of data (the year immediately preceeding the firct year of projection). For example, if only ; vears of enrollment history are available, fall semester numbers will run from 11 to 19.

The remaining 14 fields contain enrollments by grade for the particular
…houl identified by the school number (F1). These are ordered as follows: kindergarten, 1 st grade, 2nd grade, ..., 12 th grade, and s.becial rduati... unly those fields that represent grades taught in the particular achool identified should contain enrollment data, the others should be blank or zero.

The records must be grouped by year (fall semester number) with the most recent year last. Within each year, the records must be grouped in ascending order by school number.

Teacher Utilization

TRPARA, The Teacher Utilization file, consists of two parts. Part 1 contains the projected average teachers salaries by year for the next 10 years (beginning with the lst year of projection). Part 2 contains class loading data, order by TEA subject code, and by school. The class loading is defined to be the fraction of the student body in a school who take a subject times the reciprocal of the average number of pupils a teacher in that subject area meets in an average day.

TRPARA Part 1. TRPARA Part 1 consists of 2 records. Each record contains j fields to be read under a 5 F10.0 format. The ten fields will contain average teachers salaries for the next 10 years, in ascending order by yegr.

TRPARA Part 2. TRPARA Part 2 consists of five records for each sckool in the district, ordered by school number, with the 5 records for school number 1 first, the 5 for school number 2 next, and so on. Each record is read under a 5 Fl0.0 format. The fields contain the class loadings for a particular class by TEA subject code, with the first field on record 1 contafing the. class loading for Subject 01 (Agriculture), fiely 2 containing the cla.
loading for Subject 02 (Art) and so on up to 5 fields for record 1. Field 1 on record 2 contains the class loading for Subject 06 (Foreign Languages) and so on through a total of 5 records and 25 subject codes. All five records for a school must be supplied, and fields for subjects not offered at the particular school should be blank or zero.

Pacilities Data

The Facilities Data File, FACDAT, lists facilities data by pchool for each school in the district. Each record lists rooms by type for a school. The records must be in ascending order by school number.

Each record is read under a $6 I 5$ format.

The six fields on a record contain room data (from left to right) as follows:

Field 1 - regular classrooms available at the school
Field 2 -.large rooms available (library, auditorium, etc.)

Field 3-science laborator fes available

Field 4 - vocational classrooms available
Field 5-auxiliary rooms on site

Field 6 - total auxiliary rooms that can be placed on site

Program Flow and Calculations

Enrollment Forecasting

Enrollment projections are made using one of several "cohort survival" techniques. In these techniques, a ratio of the number of students in of a grade to the number in the previous grade the prior year is calculated. This ratio, called the cohort survival ratio, is calculated from the enrollment history. It takes into account grade retention, normal attrition in the school, and normal in-migration into the school. This ratio is used with enrollment information for a given year to project the number of students one grade higher, one year later.

Three methods are available for calculating the statistics on cohort survival. The first is called the Mean of the Ratios. In this method, the cohort survival is calculated for each grade for each vear of data. The mean and variance of these ratios are then calculated and reported. The configuration of enrollment data can be illustrated as follows using TE to refer to Total Enrollment:

Cohort Ratio $=F I(I)=\frac{1}{N}-I \sum_{J} \quad T E(I+1, J+2) / T F .(I, J)$

$$
\begin{aligned}
\text { where } I & -2=\text { grade, for } I=3,4, \ldots, 14 \\
J & =\text { semester }(J+2 \text { refers to the following year }) \\
N & =\text { number of semesters of history data }
\end{aligned}
$$

The second method is called the Ratio of the Averages. In this method, the average number of pupils in a given grade is divided by the average number of pupils a year later in the following grade to determine the cohort survival ratio. The varlance in the ratio of these averages is then calculated and reported.

Survival Ratio $=$ FI $(I)=\left[\frac{1}{N}-1 \frac{\sum_{J}}{} \operatorname{TE}(I+1, J+2)\right] 1\left[\frac{1}{N}-1 \sum_{J}^{-} \quad 11 .(1,1)\right.$ The third method involves first calculating the cohort survival rato as in method one. The logaritho of each ratio is determined, and the mean of the logarithms and the variance in the mean is calculated. The anti-log of the mean is then determined, and the results of these calculations are : eiortod. The anti-log of the mean is represented as the Log Normal Cohort Survival. Ratio.

Cohort Ratio $=$ FI $(I)=\left[\begin{array}{l}\pi \\ J \\ J E(I+1, J+?) / T E(I, J)\end{array} 1 /(N-1)\right.$

$$
\begin{aligned}
& =\text { anti- } \log \frac{1}{N}-1 \log \prod_{T}[T E(I+1, J+2) / T E(I, J)] \\
& =\text { anti-log} \frac{1}{N}-1 \sum_{J} \log [T \mathrm{~T}(\mathrm{I}+1, J+2) / \mathrm{TE}(\mathrm{I}, \mathrm{~J})]
\end{aligned}
$$

The cohort survival ratio FI is used to calculate an enrollment figure for I, semester J, as follows:

$$
\operatorname{It}(\mathrm{I}, \mathrm{~J})=\mathrm{TE}(\mathrm{I}-1, \mathrm{~J}-2) * \mathrm{FI}(\mathrm{I}-1) \text { for } \mathrm{I}=3,4, \ldots 14
$$

where I - 2 gives the grade and J - 2 represents the year immediately prece year J.

The cohort survival ratios calculated can be used as is to forec ist futuru enrollment by grade, or the ratio can be modified by adding or s int racting fraction of a standatd deviation to reflect future growth or declin' not at for by the history data. The modified ratio can then be used to forecast enrollment.

The last year of data is used with the survival ratios to calculate the ent ment in the first year of projection. The same ratios are appiied using th year of projection to project a second year and so forth until the final y projection is reached. Enrollment is distributed among schools on the bas the ratio of the enrollment in a given grade in a given school to the tota enrollment in that grade in the district. These ratios are applied year by year in order to calculate the enrollment in a given school.

In addition to forecasting enrollment directly from the cohort survival ra the program makes provision for inward and outward migration of students. Migration can be applied to the district as a whole, representing growth o decline in total population, or it can be applied to an individual school grade. If the migration figures are applied at the individual school leve

It is the users respons．ility to see that the net migration within the district $1 s 0$ ；that is，if 50 pupils are removed from rne schooh 50 pupils must be entered into another school．Any net change in total enrollment must be handled at the district wide level．

Teacher Requirements

Once the enrollmenr by school has been calculated，the teacher requirements can be determined．For an elementary school，teacher requirements atc cal－ culated on then basis of pupil／teacher ratios by grade．The enrollment in a grade is multiplied by the reciprocal of the pupil／teacher ratio in order to calculate the number of teachers required for a given grade．

For secondary schools，the number of teachers is calculated for each subject． An array of class loading ratius is calculated，each of which reflects the fraction of the pupils（in a given schnol or district wide）taking a given subject multiplied by the reciprocal of the average number of pupile a teacher In a particular subject area meets for an average day．The matrix of ratlou is mulliplied by the total enrolment in the school in order to calculate the number of teachers required to teach a given subjert in that school．

For secondary schools，the calculations are as follows：
Teachers Required $(I)=$ Students X Class Loading（I）
$=$ Students X Fraction Taking I／Contact（I）
where

Teachers Required（I）$=$ Number of teachers required for subject I
Students $=$ Number of students（total for school）
Fraction Taking $I=$ Fraction of students taking subject I

```
Contact (I) = Average number of pupils a teacher in subject I meets
    for an average day
    = Average class size for subject I times average number
                        of classes per teacher in subject I
```

Salary is calculated on the basis of an average teacher's salary by vear. The salary requirement at a school is obtained by multupling the t it number of teachers at that school by the average salary to be pasd in , hlven year. This number is recorded as the teacher salaries for that year.

1
 Facilities Forecasting

The facilities forecast 1 's based on the teacher forecast. In general, rooms are assigned on the basis of one room for a teacher, with the type of room being determined by the subject taught. The number of rooms required is increasor! by fraction to reflect the fact that the room may be utilized by the teacher for activities other than classes. Thus, in a f-perind day in which the room is utilized 6 periods for classes, seven-sixth of the total number of classes required is calculated as the total number of rooms required.

The facilities portion of the program can r efloct changing inventorifu of classroom space. When the total number of available rooms at a given ahoul is changed for any one vear of the projection, the change is carried forward to all future years.

Program Flow

The following chart illustrates the inceractive lialosue and pros: w:
Underlined segments are communications to the user, and the left braket.
Indicate user responses. Information describing program functions and flow Is enclosed in parentheses.
(1) OPTIONS

```
            b, N O, STOP, ENO - (GOTO 2)
Y ES - (READ \(\therefore\) ELIST OPTION \()\) - (GO TO 2)
```

(2) IS ENROLMENT CN FILE

```
            b, N 0, - (READ DATA FROM FILES 10, 11, 12-
                    ENRLH, TRPARA, & FACDAT) - (GO TO 3)
    Y ES - (READ BLNARY DATA FOR ENRLH, TRPARA, &
                    FACDAT STORED ON DISC) - (CO TO 3)
    STUP, END - (REWIND F[LES) - (GO TO 4)
```

(3) (WRITE NEW BINARY DATA FILES ON DISC)
(CALCULATE LEAST SqUARES PROJFCTION AND
WRITE R SQUARE, A_{0}, A_{1}, A_{2})
INITIAL YEARS FOR DATA AND PROJECTION
(WKITE YEAK 1, YKAK 2)

IHERE, ARE (N-) SCHOOLS IN THIS SYSIEM
$\left(\mathrm{N}_{1}\right)$ OF THEM ARE HIGH SCHOOLS
$\left(\mathrm{N}_{2}\right)$ OF THEM IRF MIDDLE SCHOOLS
$\left(\mathrm{N}_{3}\right)$ OF THEM ARE ELLMENITRY SCHOOLS

OO YOU WANT THE INDEX?

```
        N O , B, STOP, ENI) - (GOTO 4)
        Y ES - (GO TO 5)
```

(5)
(PRINT DATA UNDIR COLUMN HEAIINGS)
(4) INPUTS (USER MAY MODLIY INPUT DATA)

```
N O , STOP, END, EXIT - (GO [i] 7)
Y ES - (GOTO 8)
    0 - (MODIFY NA'LLIST OPTION) - GO TO 9)
```



```
    M - (MIGRATIOS IAT1) - (GO TO 15)
    F - (FACLLITIES DAIA) - (6O TO 15)
    T - (TEACHER DALA) - (GOTO 15)
```

(8) $\mathrm{B}, \mathrm{M}, \mathrm{F}, \mathrm{T}, \mathrm{O}$

(10) ATLR BIRTHS OK NUMBER OF YLARS FOR TREDD
(WRITES IST YEAR)
(enter births for dach year IUter ydar is typeil oit -
gUST be greater than 20; or hinter numbir of
years for trend - must bie llese fhan 20)
(IF BIRTH DATA BY YEAR ENTERED - GO TO 4)
(IF NUMBER OF YEARS FOR TREND ENTEREL, CALCULATE LEAST SQUARES PROJI (IIIN AND WHITE R ṢQUARE A_{n}, A_{1}, A_{2},
(GOTO 4)
(15) K.ND J
$\left[\begin{array}{l}\text { (ENTER TWO NUMERIC FIFLDS: SCHOOL NMMBER AND YEAR. } \\ \text { ZERO SCHOOL NUMBER } \because \text { ILCATES DISTRICT-WIDE INPUTS.) }\end{array}\right.$
(Ii RESPONSF IO 1 ' wis M, (GO TO 1f)
(IF RISPONSE TO 1' WAS F, GO TO 22)
(IF RESPONSE TO 11 wAS T, GO TO 23)
(16) MIGR
 (GRADE, AS IN KLADLRGARIEN, $1 S T, 2 N D, \ldots . .12 T H$, SPECTAL EDUCATION. EACH NUMBI:R REPRESENTS MIORATION INTO OR OUT OF EACH GRADE FOR School Aivi Year lohntifilo in 15)
(22) RroMS
 AVAIIABLF FOK : IH. SMOOL AND YEAR IDENTIFIED IN 15, ACCORDING IO THE FOLLOWING, SEQUENCE: 1-REGULAR CLASSROOMS, 2-LARGE ROOMS AVAILABLE, 3-LABORATORIES, 4-VOCATIONAL CLASSROOMS, 5-AUXILIARY ROOMS ONSITE, G-TOTAL AUXILIARY ROOMS THAT CAN BE PLACED ON SITE.)
(23) TRPAR
(ENTER 25 NUMERIC FIFLLDG REPRESENTING CLASS LOADINIS, IN SEQUENCF: BY i TEA SURJECT CODE, FOR SCHOOL AND YEAR IDENTIFIED IN 15)
(57) STATISTICS (1st TIME, OR H' "STAT" is SEI TO TRUE IN VMY: iSt OPTION)

$$
\begin{aligned}
& {[\mathrm{N} 0, \mathrm{STOP}, \operatorname{END}-((1), 1,8)} \\
& \text { R - (ratio of avfraces - (:) TO 53) } \\
& \text { A - (averaci of ratios - (:) } 10 \text { 54) } \\
& \text { L - (LOK:NORMAL - GO TO } \% \text {) } \\
& \text { M - (uSer supflief urvivid Ratio - } 60 \text { To 56) }
\end{aligned}
$$

(53) (Calculate rat io of \therefore. agges and list - go to 58)
(54) (Chlolate averais. if matios and list - (io) to 58)

 Ist is nemerator aini 2nd is menomtmalor - Go Tu 58)
(58) CHANGE PRED ICTORS

```
-N 0 , STOP, END - (GO PO 7)
    R - (RAILO Or AVFRAOES -..l (0 53)
    A - (average of ratmos - (00 T) 54)
```


$$
\left[\begin{array}{lllll}
\because & 0 & (0,0 & T 0 & 70
\end{array}\right)
$$

1. CLASTiR BY S(HOOL I. I).)
(63) PRINT LNROLIMENT?
$\therefore 10-\quad$ (CO TO 70)
Y LS - (PRINT MRODLMANIS, THEN (GO TO 70)

REPORTS

N 0 , STOP, END $-(6.0$ TO 80)
T, (CASE No.) - (TOTAL ENROLLMENT, CASE NO.)
TT, (CASE NO.) - (TOTAL TEACHERS, CASE NO.)
$\dot{F}, \quad(C A S E$ NO.) - (TOTAL FACILITIES, CASE NO.)
E, (CASE NO.), (SCHOC:-) - (ENROLLMENT PY CASE AND SCHOOL)
T, (CASE NO.), (SCHOOL) - (TEACHER REQUIREMESTS bY CASE AND SCHonl)
F, (CASE NO.), (SCHOOL) - (FACILITIES REQUIREMENTS BY CASE MNi) s Moll)
CT, (CASE), (CASE) - (COMPARATIVE TOTAL ENROLLMFNTS, TWO CAS : \quad,
CE, (CASE), (CASE), (SCHOOL), (GRADE) - (COMPARATIVE ENROLLAFRNT, TWO CASES, BY SCHOOL AND GRADE)

CT, (CASE), (CASE), (SCHOOL), (GRADE) - (COAPARATIVE TEACHER KEQUIRPMENTS TWO CASES, Bi SCHOOL AND GRADE)

CF, (CASE), (CASE), (SCHOOL) - (COMPARATIVE FACILITIES UriliZATION, TWO CASES, AND SCHOOL.)

CD, (CASE), (CASE), (SCHOOL) - (COMPARATIVE DIFFERENCES in ENROLLMENT, teachers and facilitics, two cases Aiv SCHOOL)
(80) WHAT NOW?
$[$ I QUIT - (EṆD ÖF PROGRLM) (GO TO 2)

The reports available are:
District-wide Keports

Total Enrollment (by case)
Total Teachers (by case)
Total Facilities (by case)

School Reports
School Enrollment (by case and school)
Teacher Requirements (by case and school)
Facilities Utilization (by case and school)
Comparative Reports
Total Enrollment (two cases)
School Enrollment (two cases, school and grade)
Teacher Requirements (two cases, school and grade)
Facilities Utilization (two cases and schoul)
Differences in Enrollment, Teachers, and Facilities (tw, custr and bly
Example reports using test data follow.

Report Requested by User:

Total Enrollment, Case 1

T 1

Report Requested by User：

Total Teacher Requirements，Case 1

IT 141.
IFACHF：rF：LIIFFNEVIS
10ヶF\＆•・ヘットCASI

（ Cut frat	1	P．	3	4	5	f	7	4	9	10				14
1974－75	＇	n	3	－2	14	1	0	5	2	0	，	$?$	7	0
1．）75－76	3	0	3	2	18	1	0	5	3	U	9	2	7	0
197¢－77	3	0	3	C	18	1	0	5	3	0	9	2	M	0
1977－7k	3	0	3	？	19	1	0	F	3	0	9	2	¢	0
1978－79	3	0	3	：	1）	；	\bigcirc	F	3	0	9	？	\＆	a
1379－80	3	$(1$	4	$?$	19	？	0	¢	3	0	10	¢	\％	0
1980－9，1	3	0	4	\％	$\therefore 0$	$?$	0	7	3	0	10	2	K	0
19＊1－x？	3	0	4	＇	20	＇	0	7	3	0	10	2	9	0
19イつ－ヶ3	3	0	4	2	C1	$?$	0	7	3	0	10	：	）	0
17ッ3ート4	3	0	2	¢	21	2	0	7	3	0	11	2	，	0
SC．PFAK	15	$1 F$	17	$1 \times$	19	\because	21	く？	$\because .3$		701	ALS	Al， 4	IF．S
1－7：-75	11	0	13	\bigcirc	76	3	0	0	0			14	30	0.00
1）75－76	11	0	13	0	30	3	0	0	0			157	800	－．cc
197f－77	11	0	13	\bigcirc	¢1	3	0	0	0			16	000	0．00
1977－79	11	0	1.3	0	48	3	\bigcirc	0	0			1 ¢R	300	0.00
1）7：${ }^{19} 7$	11	0	14	0	8	3	C	0	0			174	720	$0 \cdot 00$
1．97）－80	13	0	15	0	¢1	3	0	0	0			183	¢＇${ }^{\text {c }} 5$	0.00
1990－a1	13	n	15	0	83	3	0	0	0			132	500	0.00
1） 1 1－4\％	13	0	15	0	45	3	0	0	0			201	140	$0 \cdot 0$
1）K¢っか3	13	\bigcirc	1%	0	97	3	0	0	0			212	40	0.00
1つめ3－ヶ4	13	\bigcirc	16	0	8F	3	0	0	0			218	400	$0 \cdot 00$

？

Report Requested by User：
Teacher Requirements，Case 3，School No． 5

```
'(HOn! NO. j,kFNVELY , CASE 3
THf(:F! if: IMEMENTS
1) YFA: fO:FCAST
```

！Cr YEA：	K	1	8	3	1	5	6	5 F FL	701AL SALAIPIES
1974－75	3	11	13	0	0	0	0	1	323000.00
1975－7f	10	12	12	\bigcirc	ก	0	0	1	343000.00
197¢－77	11	13	13	0	0	0	0	1	380000.00
1977－72	10	15	14	0	0	0	0	1	$408000 \cdot 00$
1973－7）	11	14	16	0	0	0	0	1	436900．00
177＋50	$1:$	15	16	\bigcirc	0	0	0	1	473000.00
1740－81	15	17	17	0	0	0	0	1	550000.00
$1+11-\cdots$	16	20	19	0	0	0	0	2	644100.00
13\％－33	1%	22	a 3	0	0	0	0	2	$760500 \cdot 00$
1）くこの名的	っこ	25	d	0	0	0	0	2	$900000 \cdot 00$

ifrol TS
?

Report Requested by User:
Total Facilities, Case 4

TF4

SCHONI, VO. O, DOINL CASE \&
FACILIIIFこ FHOLT
In rfa: FOr.iCusI

AFif):12
?

Report Requested by User：
Facilities Report，Case 1 ，School No． 2

1． 1

1．FG Aiji
FMCII．171i ：1．1（1）
100M＝sms $\therefore H \cap_{t:]}$ \＆
1のrFn：ト）： $\mathrm{F}(\mathrm{A} . \mathrm{I}$
11

	$\begin{aligned} & \text { Fr:star } \\ & \text { '90ur!! } \end{aligned}$		LA！RF －noves		$\begin{aligned} & \text { CIIFVCF } \\ & \text { IOOY } \end{aligned}$		$\begin{aligned} & \text { OOC } \triangle 1 \\ & \text { ronvs } \end{aligned}$		$\begin{aligned} & 101 \mathrm{AL} \\ & \text { nOOVS } \end{aligned}$	AIIYILLATY					11					
				．00w				C				$!$								
	\wedge				$今$				\uparrow		A			A			\triangle	1］	r	
	：		\because	$!$	1	1.	（	：			\checkmark	F	v	\therefore						
	a	F	θ	F	f	F	A	r		¢	f．	O		1	n	0				
	I	，	I	＇	I	1	I	1		U	I	：		v	$\stackrel{4}{4}$	v				
r	${ }^{1}$.	1	1.	${ }^{1}$	1.	11	L．	1	\leq	！	L	：		\％	＊					
${ }^{\prime}$		1	A	I	A	I	A	I	H	r	ค	1				$!$				
1.	：		1		1	：	F	n	0	1.	［	I	A	\wedge	ก	I				
	1.	F．	1.	1	1.	E	1.	F．	，	15	1.	L	1	1）	1	1				
	－	1	F	1	t	1	F．	1	1	\leq	E	F	1	\therefore	；	F				
74	－ 1	14	ℓ.	\because	0	0	3	3	0	K	0	（）	0	r	0	（：				
7	\because	14	4	；	0	n）	3	3	\bigcirc	R	0	0	n	0	(1)	n				
78	r	1 l	1	＇	(1)	0	3	3	10	7	\bigcirc	1）	0	ก	0	r				
77	．${ }^{1}$	17	4	\cdots	0	0	3	3	0	5	0	0	0	0	－ 1	0				
7	$\therefore 1$	17	4	：	0	（1）	3	3	（）	5	0	0	0	（	c	1				
7.	\because	1\％	1	＇r	0	0	3	4＊	1	4	\bigcirc	0	（）	0	$1)$	0				
＇11	$\because 1$	$1<$	4	－	0	\bigcirc	3	4＊	1	4	0	0	$1)$	0	（1）	0				
$\cdots 1$	$\therefore 1$	$1:$	6	\because	n	0	3	3	0	4	（1）	0	0	（）	1	0				
：${ }^{\prime}$	小i	$1)$	4	\therefore	0	（1）	3	4＊	1	3	$(1$	0	0	0	0	1				
is	$\cdots($	＇1	4	\therefore	0	0	3	4＊	1	¢	0	0	（V）		－0	0				

Report Requested by User：
Comparative Total Teachers，Case $\underline{1}$ and $\underline{2}$ ，
School No． 5
（T1 引
（HOOL リッ．S，xFVVELY CASE 1 fVL 2
IOTへL IENCHF：S COM！Ais＠IIUF ：．EFO．I

$\therefore \mathrm{A}$	Westr	cover	LIF
1774－75	3% 。	20．	－12．
1375－7f	30。	21^{\prime}	－11．
197－77	33.	こな．	－11．
1）77－74	33.	ria．	－11．
197－2－7）	33.	20.	－13．
1）7－20	is．	20.	-11.
1930－91	$3 \dot{r}$	F＇s．	-10.
1951－9\％	$\because 1$.	¢く，	－1110
	37.	$\cdots!$	－13．
13ヶ3－96	37.	24.	-13.

Report Requested by User:
Comparative Facilities, Case $1 \notin \underline{2}$,
School No. 5
rr 1 -
 1F! ?

Report Requested by User:
Comparative Differences in Enrollment, Teachers, and Facilities for Case 1 and 2, School 5

C I 1 2 5					
SCHOOL VO.	5, KE:	[Y	CASE 1 A	AVL 2 !	
$\begin{gathered} \text { DIFFFFFVCF } \\ \text { YEGI. } \end{gathered}$	RFFOMT				
	Evinis	IFACH		Fooms	
			AVAIL	S HOH !	SHORT
1974-75	-310	-12		$0-11$	-11
1975-76	-289	-11		$0-10$	-10
197f-77	-231	-11	0	$0-9$	-9
1977-78	-314	-11		$0-9$	-9
1978-79	-32f.	-13		0 -11	-11
1979-80	-290	-11		0 -11	-11
1980-81	-28.	-10	0	$0-9$	-9
1991-82	-290	-10		- 7	-7
	-329	-13	0	$0-7$	-7
1943-84	-32.9	-13	0	$0-7$	-7

1

[^0]: **

 * Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * to obtain the best copy available. nevertheless, items of margiñal * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * * responsible for the quality of the original document. Peproductions * * supplied by EDRS are the best that can be made fron the original.

[^1]: **

 * Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * to obtain the best copy available. nevertheless, items of margiñal * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made fron the original. **

[^2]: ME:O! I

